
<Insert Picture Here>

Building and Configuring a Real-Time Indexing

System

Garret Swart, Ravi Palakodety, Mohammad Faisal, Wesley Lin

What does “Real-Time Indexing” mean?

• Transactional Indexing
– When the document insert commits:

• The document is durable and visible

• The document has been indexed

• Subsequent search requests will “see” the document

– Required if the text index forms a required access path to the
document

• Is this important? Not usually. Required access paths are
generally based on document meta data, not document
contents

Oracle Corporation (c) 2010

What does “Real-Time Indexing” mean?

• Timely Indexing of
– Real time twits

• @worldcup Goooooaaaaalllll

– Breaking news feeds

• The Blick offers 20,000 CHF to find fugitive captain

– Financial press releases

• UBS AG reports first-quarter profit of 2.2 billion CHF

– Email

• From: Mom Subject: Meet Aunt Sophie at the airport

– Shopping bargains

• Today only! 25% off on Big Screen TVs

– Facebook and LinkedIn status changes

• Work those rebounds! Save those jobs!

Oracle Corporation (c) 2010

What does “Real-Time Indexing” mean?

• Maintaining Search Quality
– Deep document analysis

– Global (Link and Anchor Text) analysis

– Document rank prediction and validation

• Not subject of this talk
– We’ll focus just on KWIC

Oracle Corporation (c) 2010

In this talk

• Oracle Text background

• Real-time index maintenance in Oracle Text

• Performance modeling

Oracle Corporation (c) 2010

Oracle Text

• A text processing, indexing and query facility for
textual documents stored in an Oracle database
– Originally released in 1997 as a cartridge for Oracle 8.0

• Documents are assigned increasing IDs as they are
found. Documents can be:
– CLOB and VARCHAR columns

– Extracted from XML documents

– Extracted from Word/PDF/JPEG files

– Constructed with SQL or XQuery view

• Each document is parsed into index entries using a
customizable parsing method
– Each entry records a search term, the document ID, and the

logical offset of the term inside the document

Oracle Corporation (c) 2010

Oracle Text

• Let there be Indices
– Inverted Lists: For each term we

sort and compress the IDs and
offsets and store them into a
sequence of BLOBs, each stored
contiguously

– Terms and BLOB handles are
stored in a B-Tree

• And the queries were good
– SQL CONTAINS operator

computes a relevance score based
on a match of the pattern against
the document

– CONTAINS is implemented through
parallel inverted list merging

S
w

itze
rla

n
d

R
e

trie
v

a
l

R
e

trie
v

a
l

C
h

e
e

se
C

h
e

e
se

C
h

e
e

se

G
ru

y
è

re

x
x

y
x

y
x

y
7

8
9

SELECT * FROM (SELECT
title FROM News WHERE
CONTAINS(contents,

'NEAR((cheese,
Gruyère)) AND

Switzerland', 1) > 0
ORDER BY SCORE(1)
DESCENDING) WHERE

ROWNUM <= 10

R
a

cle
tte

E
m

e
n

th
a

lle
r

Oracle Corporation (c) 2010

Text Index Update

• Text Indexes are updated in batches
– As Index entries are produced they are grouped by term to

form a set of in-memory inverted lists

– When a transaction commits, memory fills up, or enough time
has passed, each list is either

• Appended to the end of an old BLOB

• Written into a new BLOB and a new B-Tree entry created

• As the time between batches decreases
– The number of entries per term decreases proportionally

– The number of terms decreases slowly

– The number of IOs increase

• In memory or SSD-only is not cost effective for low
query/corpus-size applications

Oracle Corporation (c) 2010

Real-Time Text Indexing

• Introduce a stable staging index for new index entries

• Logically merge the staging index and the mature
index when searching

• In background, append staging BLOBs to the
corresponding mature BLOB and delete the staging
BLOB
– Increase bg priority as the staging index gets larger

• Store the staging index on SSD and optionally pin its
blocks in-memory
– Storing staging index in memory avoids having to read the

staging index when coalescing or querying

Oracle Corporation (c) 2010

New Indexing Process

S
w

itze
rla

n
d

R
e

trie
v

a
l

C
h

e
e

se

S
w

itze
rla

n
d

R
e

trie
v

a
l

C
h

e
e

se

G
ru

y
è

re

x
x

y
x

y
x

y
7

8
9

In Memory

Inverted List

construction

~200 MB

On SSD

Staging Index

~64 GB

On Disk

Mature Index

~10 TB

Documents

to

be Indexed

~10 TB

S
w

itze
rla

n
d

R
e

trie
v

a
l

R
e

trie
v

a
l

C
h

e
e

se
C

h
e

e
se

C
h

e
e

se

G
ru

y
è

re

x
x

y
x

y
x

y
7

8
9

R
a

cle
tte

E
m

e
n

th
a

lle
r

Oracle Corporation (c) 2010

Evaluating the New Approach

• Is this good? It does more IO
– Every index entry is written twice: Once to the staging and

once to the mature index. But I

• Staging updates are cheaper than mature updates:

– Random updates to an SSD are cheaper

– Updates to a smaller B-Tree are cheaper

• Each write to the mature index adds many accumulated
entries

• But unique terms don’t accumulate entries
– Many documents have unique terms we must index

– Solution: Hash unique terms to a set of “bucket terms”

– Pull unique terms out of the bucket on repeated use

– Rehash terms if an inverted list gets too long

Oracle Corporation (c) 2010

Modeling Performance

• Why model performance? Evaluate, Size, Tune
– Evaluate different algorithms

– Size

• DRAM, Storage system, CPUs

– Tune

• When should we add a new BLOB vs. append to an
existing one?

• How long should we let a bucket term’s inverted list grow?

• Managing performance?
– DBA intervention

– Performance “Advisors”

– Self Management

Oracle Corporation (c) 2010

Modeling Parameters

• Corpus Size

• Average Document Size

• Expected Distinct Terms:
Size � Count

– Derivative approaches a small
non-negative constant

• Document Arrival Rate
– Documents / Second

• Index Timeliness

• Terms and entries per term
– Worst case (98%)

– Expected case

• Query Performance
– Worst case latency

– Expected Throughput

• Maximum LOB size

• DRAM size & cost

• SSD size, IOPS, count, cost

• HDD size, IOPS, count, cost

• Document Parse CPU/MB

• Inverted List Merge
CPU/MB

• Core Count

Oracle Corporation (c) 2010

Constrain relationships between the parameters

• Worst case (98%) query latency
– Many terms each with big uncached inverted lists

– IO Latency:

• BLOBs = Σterm ceiling(|invertedList(term)| / BLOB-SIZE)

• EMaxBallsPerBin(BLOBs, HDD count) * HDD Latency

• Expected query throughput
– Fewer terms, many in cache

– HDD throughput

• BLOBs * MissRate / (HDD IOPS * HDD Count)

– CPU throughput

• CPU/MB * Σterm |invertedList(term)| / Cores

Oracle Corporation (c) 2010

Pick your inputs, chose your objective function, find

a solution, validate

• Configure a given hardware configuration to give best
throughput

• How to best utilize an extra $100K to improve worst
case latency

• Size a new system to meet a new work load
– Hard because parameters are hard to estimate for a new

workload

• Caveats:
– LP not good enough: Need nonlinear, integer programming

– Easy to miss critical constraints, Need to validate answers

Oracle Corporation (c) 2010

Conclusions/Assertions

• Real time indexing is useful for many applications and
we want data indexed as fast as possible

• SSDs can change the set of suitable algorithms real-
time indexing

• Performance modeling is good
– Evaluate, Size, Tune

• Databases can support IR!
– Database infrastructure is useful when building IR tools:

• B-Trees, Write ahead logging, LOBs, Parallelism,
Transactions, Disaster recovery, Encryption, Security,
Extensibility

– IR is essential in modern enterprise applications

– IR applications can be built on an embedded database

Oracle Corporation (c) 2010

